Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury.
نویسندگان
چکیده
Axonal degeneration occurs in multiple neurodegenerative disorders of the central and peripheral nervous system. Although the underlying molecular pathways leading to axonal degeneration are incompletely understood, accumulating evidence suggests contributions of impaired mitochondrial function, disrupted axonal transport, and/or dysfunctional intracellular Ca(2+)-homeostasis in the injurious cascade associated with axonal degeneration. Utilizing an in vitro model of axonal degeneration, we studied a subset of mouse peripheral sensory neurons in which neurites were exposed selectively to conditions associated with the pathogenesis of axonal neuropathies in vivo. Rotenone-induced mitochondrial dysfunction resulted in neurite degeneration accompanied by reduced ATP levels and increased ROS levels in neurites. Blockade of voltage-gated sodium channels with TTX and reverse (Ca(2+)-importing) mode of the sodium-calcium exchanger (NCX) with KB-R7943 partially protected rotenone-treated neurites from degeneration, suggesting a contribution of sodium channels and reverse NCX activity to the degeneration of neurites resulting from impaired mitochondrial function. Pharmacological inhibition of the Na(+)/K(+)-ATPase with ouabain induced neurite degeneration, which was attenuated by TTX and KB-R7943, supporting a contribution of sodium channels in axonal degenerative pathways accompanying impaired Na(+)/K(+)-ATPase activity. Conversely, oxidant stress (H2O2)-induced neurite degeneration was not attenuated by TTX. Our results demonstrate that both energetic and oxidative stress targeted selectively to neurites induces neurite degeneration and that blockade of sodium channels and of reverse NCX activity blockade partially protects neurites from injury due to energetic stress, but not from oxidative stress induced by H2O2.
منابع مشابه
Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential.
Wallerian degeneration, the disintegration of the distal part of an injured axon, is an important event in many neurodegenerative diseases. We studied Wallerian degeneration in dorsal root ganglion (DRG) explants in culture by separating neurites from their cell bodies with a scalpel. The severed neurites showed Annexin V positive staining, that spreads distally with a rate comparable to that o...
متن کاملNmnat delays axonal degeneration caused by mitochondrial and oxidative stress.
Axonal degeneration is a prominent feature of many neurological disorders that are associated with mitochondrial dysfunction, including Parkinson's disease, motor neuron disease, and inherited peripheral neuropathies. Studies of the Wld(s) mutant mouse, which undergoes delayed Wallerian degeneration in response to axonal injury, suggest that axonal degeneration is an active process. Wld(s) mice...
متن کاملRelationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملRole of oxidative stress in rabies virus infection.
Recent studies in an experimental model of rabies indicated that there are major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult mouse dorsal root ganglion (DRG) neurons are a good in vitro model for studying the mechanisms involved in rabies virus-induced degeneration of neurites (axons) because, unlike other neurona...
متن کاملEffects of clonidine on lidocaine-induced inhibition of axonal transport in cultured mouse dorsal root ganglion neurones.
BACKGROUND The alpha(2)-adrenoceptor agonist clonidine is used in combination with lidocaine for anaesthesia. Lidocaine inhibits axonal transport and neurite growth, whereas alpha(2)-adrenoceptor agonists have neurotrophic effects. Here we have investigated whether clonidine reduces lidocaine-induced inhibition of axonal transport in cultured mouse dorsal root ganglion neurones. METHODS Axona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 49 شماره
صفحات -
تاریخ انتشار 2013